FAQ GLOBAL SMART GLASS

Share with you all about smart glass.

Why is PDLC considered to be smart?

The smartness of PDLCs is a result of its ability to change its transparency (technically called the transmittance) when an electrical stimulus is applied to it. This is normally by way of an alternating voltage, which exerts an alternating electric field across the PDLC material.
Nevertheless, the PDLC is only as smart as the control system which stimulates the change, which can be driven by a push button switch, a light sensor, or a building automation system.

More related.

Why does PDLC glass scatter light?

The liquid crystals change their refractive index in relation to the isotropically transparent polymer in which they are immersed, thereby creating multiple step boundaries throughout the PDLC.
It is this change in refractive index at each boundary which causes light to change course. Since the PDLC material contains millions of liquid crystals, each with a boundary facing a slightly different way, the light is scattered in many directions.
The net effect is to hide whatever is behind the PDLC smart glass.

MORE FAQ >>>

Does PDLC smart glass become opaque?

No, the correct term is translucent, since light still gets through, albeit scattered in many directions. The glass would be opaque only if the light was blocked or absorbed.

MORE FAQ >>>

Which sectors are using PDLC glass?

Transportation
Architectural (residential and commercial)
Interior design
Retail advertising
Healthcare (i.e. hospitals and clinics, since the PDLC smart glass can replace unhygienic curtains and blinds which often carry microbes and germs, and this also improves air quality)
Banking, thanks to the privacy afforded to ATMs and as internal partitions
Hospitality, especially bathrooms, since more natural light can penetrate interior spaces lacking windows to the outside world.

MORE FAQ >>>

What is the maximum size of smart glass?

The maximum size of smart glass: 2000mm*6000mm (6.5ft*19.5ft).

MORE FAQ >>>

Why is PDLC considered to be smart?

The smartness of PDLCs is a result of its ability to change its transparency (technically called the transmittance) when an electrical stimulus is applied to it. This is normally by way of an alternating voltage, which exerts an alternating electric field across the PDLC material.
Nevertheless, the PDLC is only as smart as the control system which stimulates the change, which can be driven by a push button switch, a light sensor, or a building automation system.

MORE FAQ >>>