Are PDLCs only available as artificial materials?
Not at all; common examples of natural occurrences of liquid crystals include proteins, soaps, detergents, and even some types of clay.
Transportation
Architectural (residential and commercial)
Interior design
Retail advertising
Healthcare (i.e. hospitals and clinics, since the PDLC smart glass can replace unhygienic curtains and blinds which often carry microbes and germs, and this also improves air quality)
Banking, thanks to the privacy afforded to ATMs and as internal partitions
Hospitality, especially bathrooms, since more natural light can penetrate interior spaces lacking windows to the outside world.
Not at all; common examples of natural occurrences of liquid crystals include proteins, soaps, detergents, and even some types of clay.
The smartness of PDLCs is a result of its ability to change its transparency (technically called the transmittance) when an electrical stimulus is applied to it. This is normally by way of an alternating voltage, which exerts an alternating electric field across the PDLC material.
Nevertheless, the PDLC is only as smart as the control system which stimulates the change, which can be driven by a push button switch, a light sensor, or a building automation system.
Enhanced security (since the glass is shatter-proof thanks to the internal plastic lamination)
Privacy (thanks to the scattering of light, essentially hiding whatever is behind the smart glass)
Glare reduction (again thanks to the scattering effect)
Reduction of the carbon footprint of the building thanks to the solar control, which reduces HVAC needs, both in summer and in winter
Reduced colour fading of interior furnishings and artworks, thanks to the rejection of UV
Creative marketing, since when the PDLC smart glass is off, the scattering effect creates a screen upon which you can project images.
Enhanced security (since the glass is shatter-proof thanks to the internal plastic lamination)
Privacy (thanks to the scattering of light, essentially hiding whatever is behind the smart glass)
Glare reduction (again thanks to the scattering effect)
Reduction of the carbon footprint of the building thanks to the solar control, which reduces HVAC needs, both in summer and in winter
Reduced colour fading of interior furnishings and artworks, thanks to the rejection of UV
Creative marketing, since when the PDLC smart glass is off, the scattering effect creates a screen upon which you can project images.
The polymer allows the liquid crystals to be embedded into a film, which can then be sandwiched between panels of glass or plastic. The polymer has constant optical properties which do not vary across its structure, and hence is considered isotropic.
In contrast, the liquid crystal itself is anisotropic, since its optical characteristics are not constant across its structure, but rather can vary under application of an electric field.
Yes, smart glass/film can be remotely activated. Transformer can be integrated with various controls as you like: remote contol, wall switch control, dimmer control, wifi-App control, etc.
Please leave your message here, we or our local dealer will contact you soon!